
b 

I T E M  PROGRAM MANUAL 

F O R T R A N  I V  V E R S I O N  

Fred Whitlock 
Goddard Space Flight Center 

Greenbelt, Maryland 

Henry Wolf 
Leon Lefton 

Norman Levine 
Analytical Mechanics Associates, Inc. 

Westbury, Long Island, N. Y. 

Report No. 67-9 
Contract NAS 5-9085 

May 1967 

8 
t e I 

(THRU) 

“6 7 -  3 0 9 I9 

Analytical Mechanics Associates, Inc. 
Westbury, Long Island, N. Y. 



ITEM PROGRAM MANUAL 

FORTRAN IV VERSION 

by 

Fred Whitlock 
Goddard Space Flight Center 

Greenbelt, Maryland 

Henry Wolf 
Leon Lefton 

Norman Levine 
Analytical Mechanics Associates, Inc. 

Westbury, Long Island, N. Y. 

A program of this nature must, of necessity, take a period of several 
years for its development; it is thus impossible to mention the names of all 
those who have contributed to its growth. It was originally conceived by 
S. Pines and H. Wolf at Republic Aviation Corporation under contract to NASA 
(NASW-109) beginning in 1959. 
Special Projects Branch, Theoretical Division of Goddard Space Flight Center 
(NAS 5-9085). Major contributors have been C. Bergren, C. Hipkins, L. Lef- 
ton, M. Wachman, F. Whitlock, and N. Levine. 

This version is issued under contract to the 

Numerous additions and improvements have been made to the current 
version including reprogramming for the IBM 7090 and 7094 computers, and 
development is a continuing effort. This latest edition of the Program Manual 
covers the conversion of the original machine language program to FORTRAN 
Iv. 

The program has been and is available for general use to interested 
organizations, * 

The authors express their appreciation to Mrs.  Agnes Michalowski 
for her assistance in  the final preparation of this manual. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* Address: Head, Special Projects Branch, Theoretical Division, 

Goddard Space Flight Center, Greenbelt, Maryland 

i 



. 

TABLE OF CONTENTS 

Page Section 

I . 
I1 . 

I11 . 

Iv . 

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-1 

Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-1 

General Procedure for Using Programs . . . . . . . . . . . . . .  111-1 

Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . .  1v-1 

A . Cartesian Coordinates . . . . . . . . . . . . . . . . . . .  
B . Geodetic Polar Coordinates . . . . . . . . . . . . . . . . .  
C . Geocentric Polar Coordinates . . . . . . . . . . . . . . .  
D . Osculating Element Input . . . . . . . . . . . . . . . . . .  
E . Comments . . . . . . . . . . . . . . . . . . . . . . . . . .  

1v-1 
1v-2 
1v-3 
rv-3 
1v-4 

V . 

VI . 
VI1 . 

VI11 . 

Terminating Conditions . . . . . . . . . . . . . . . . . . . . . . .  v-1 

Permissible Perturbations . . . . . . . . . . . . . . . . . . . . .  VI-I 

Radar Information Programs . . . . . . . . . . . . . . . . . . . .  v11-1 

Subroutine MODIF . . . . . . . . . . . . . . . . . . . . . . . . .  VIII- 1 

A . Radiation Pressure . . . . . . . . . . . . . . . . . . . . .  
B . Aerodynamic Drag . . . . . . . . . . . . . . . . . . . . .  
C . Atmospheric Tables . . . . . . . . . . . . . . . . . . . . .  
D . Printout . . . . . . . . . . . . . . . . . . . . . . . . . . .  
E . Ephemeris Time . . . . . . . . . . . . . . . . . . . . . .  

VIII- 1 
VIII-2 
VIII-3 
VIII-4 
VIII-5 

IX-1 

x-1 

M . 

X . 

Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

A . Program Outputs . . . . . . . . . . . . . . . . . . . . . .  
B . Optional Outputs . . . . . . . . . . . . . . . . . . . . . . .  

1 . Coordinates of Vehicle . . . . . . . . . . . . . . .  
2 . Shadow Print . . . . . . . . . . . . . . . . . . . . .  
3 . Radar Output . . . . . . . . . . . . . . . . . . . . .  
4 . Reentry . . . . . . . . . . . . . . . . . . . . . . . .  
5 . Trajectory Search . . . . . . . . . . . . . . . . . .  

x-1 
x-5 

x-5 
X-6 
x-7 
X-8 
X-8 

ii 



TABLE O F  CONTENTS (Cont.) 

Section Page 

XI . Internal Procedures . . . . . . . . . . . . . . . . . . . . . . . .  xi-1 

A . Units . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi-1 
B . Ephemeris Tape . . . . . . . . . . . . . . . . . . . . . .  xi-1 
C . Ephemeris in Core . . . . . . . . . . . . . . . . . . . . .  x1-3 
D . Perturbation Program . . . . . . . . . . . . . . . . . . .  x1-4 

XI1 . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  x11-1 

APPENDICES 

A . Introduction . . . . . . . . . . . . . . . . . . . . . . . .  A-1 
B . Equations of Motion . . . . . . . . . . . . . . . . . . . .  B-1 
C . Method of Integration . . . . . . . . . . . . . . . . . . .  C-1 
D . Solution of the Kepler Two-Body Problem . . . . . . . .  D-1 
E . Computation of Perturbation Terms . . . . . . . . . . . .  E-1 
F . Conclusions . . . . . . . . . . . . . . . . . . . . . . . .  F-1 
G . Oblateness Terms . . . . . . . . . . . . . . . . . . . . .  G-1 
H . Transformation Equations from Geodetic Polar 

Coordinates to Cartesian Coordinates . . . . . . . . .  H-1 
I . Transformation Equations for Radar Simulation . . . . .  I- 1 
J . TriaxialMoon . . . . . . . . . . . . . . . . . . . . . . .  J-1 
K . Drag Computation . . . . . . . . . . . . . . . . . . . . .  K-1 
L . Computation of Subsatellite Point . . . . . . . . . . . . .  1-1 
M . Polar Coordinates Referred to the Moon . . . . . . . . .  M-1 
N . Shadow Logic . . . . . . . . . . . . . . . . . . . . . . . .  N-1 
0 . Solar Radiation Pressure . . . . . . . . . . . . . . . . .  0-1 
P . Ecliptic Coordinates . . . . . . . . . . . . . . . . . . . .  P-1 
Q . Moon Rotating and Fixed Coordinate System . . . . . . .  Q-1 
R . Trajectory Search . . . . . . . . . . . . . . . . . . . . .  R-1 

U . Impact Parameters . . . . . . . . . . . . . . . . . . . .  U-1 
V . Moon's Orbital Plane Input and Output V-1 

Y . Change of Independent Variable - Beta Mode Y-1 

S . S-1 
T Osculating Elements T-1 

Equations for Flight Path Azimuth and Flight Path Angle . 
. . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . .  
. . . . . . . . . . . .  W Equations for Translunar Plane Input W-1 

. . . . . . .  

LIST OF FIGURES 

Figure 1 . Geometry of the Elliptic Two-Body Orbit . . . . .  
and Geodetic Latitudes . . . . . . . . . . . . .  H-2 

Figure 3 . Triaxial Moon . . . . . . . . . . . . . . . . . . .  J-3 
Figure 4 . Diagram for Shadow Logic . . . . . . . . . . . . .  

D-3 
Figure 2 . Relation Between Declination. Geocentric 

N-2 

iii 



I. IN TRODU C TION 

This report describes a general purpose Interplanetary Trajectory 

Encke Method (ITEM) Program, programmed in the FORTRAN IV language. 

The method employed is designed to  give the maximum available accuracy 

without incurring prohibitive penalties in machine time. 

research described in Reference 4, the Encke method was selected as best 

satisfying these requirements. However, the classical Encke method was 

modified to eliminate some of its objectionable features. This modified 

Encke method is described in Appendix A. 

On the basis of 

The perturbations included in this program are  the gravitational at- 

tractions of the Earth, Moon, Sun, Jupiter, Venus and Mars  considered as 

point masses. Additionally, the effects of the second, third and fourth zonal 

harmonics and the second and third tesseral harmonics of the Earth and Moon 

gravitational fields, as well as aerodynamic drag, small corrective thrusts, 

and radiation pressure including the shadow effect of the Earth, are  considered. 

The input may be prepared in any one of several common systems and a great 

variety of output options are available. 
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11. NOTATION 

Upper case  - vectors ;  Hats - unit vec tors ;  Lower case  - magnitudes 

De s c r ipt i on Symbol Units 

Car tes ian  coordinates of vehicle with respect  
t o  reference body X Y Z  km 

. . .  
Velocity components in Cartesian coordinates X Y Z  k m / s e c  

Time t h r s .  

Longitude measu red  f rom Greenwich, t East  
(used in  Section IV and Appendix H) e degrees  

Longitude of verna l  equinox e o  degrees  

Speed 

Geodetic altitude:: 

Geodetic latitude 

Geodetic flight path angle 

k m / s e c  

km 

degrees  

degrees  

Geodetic flight path azimuth A degrees  

Acceleration pa rame te r  (defined in 
Appendix E) 

Right ascension 

Astronomical units 

E a r t h  radi i  

U 

RA 

AU 

ER 

E a r t h  m a s s  m e  

degrees  

:::Note: The following 3 symbols with p r imes  denote the corresponding 
geocentric quantities. 
spherical  ear th ,  i.e., e' = 0. 
declination. 

Geocentric in this report  r e f e r s  to  a 
In this case  6' = 8 = 
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Svmbol Description 

Vehicle position vector R 

Distance to vehicle r 

Perturbation displacement vector A R  

Perturbation displacement vector components 

Perturb ation acceleration 

Coordinate functions and their time derivatives 

F 

Mass  parameter 

Semi-major axis a 

Earth's eccentricity as used in Appendices H, I ,  L , S e 

Mean motion n 

Unit  vectors for classical two-body orbit solution 

Eccentric anomaly as used in  Appendix T E 

E Elevation angle as used in Appendix I 

R . R  
0 0  0 

d 

Inclination of orbital plane i 

Right ascension of the ascending node 
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Description Symbol 

Argument of perigee 

P a r a m e t e r s  which account f o r  polar oblateness of 
the ear th ,  defined in Appendix H 

Right ascension of the station meridian 

Range measu red  f r o m  observation station 

Direction cosines measu red  in a topocentric 
coordinate sys tem 

Declination 

SUBSCRIPTS 

Vehicle 

i th perturbing body 

Quantity obtained f r o m  Keplerian solution of 
two-body problem 

Reference body as used in Appendix B 

Station 

R A  - R B  

Value a t  rectification t ime 

Corresponds to x, y, z components respectively 

Value a t  per igee 

Lc: 

V 

i 

k 

C 

S 

R A* 

0 

n = 1, 2, 3 

P 
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III. GENERAL PROCEDURE FOR USING PROGRAMS 

Initial conditions, terminal conditions and print frequency, its well as 

other parameters controlling the flow of the program, are read as input. The 

computation of the trajectory then proceeds until one of the terminal conditions 

(e. g. maximum time) has been reached or an e r ro r  is encountered. At this 

time the program prints the reason for its termination and proceeds to the 

next case. When an end of file is encountered on the input tape, control is 

transferred to the monitor. 
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IV . INITIAL CONDITIONS 

The initial conditions necessary for the specification of a trajectory are: 

1. Initial position of the vehicle relative to the reference body. 

2 .  Initial velocity of the vehicle relative to the reference body. 

3 .  Initial time of launch referenced to a base time. 

For  specification of the initial conditions, the reference systems and 

units shown below may be used. 

A Cartesian Coordinates 

The coordinate system is defined as follows: 

1. The origin is at the center of the reference body. 

2 .  The x axis is in the direction of the mean equinox of 
December 31.0 of the year of launch. 

3.  The xy plane is the mean equatorial plane of the Earth. 

Initial position is given by the x, y, z coordinates of the 
vehicle. Initial velocity is given by the k, $, i com- 
ponents of the vehicle. Initial time of launch from base 
time") ( t )  is also given. If the program is used in its 
standard form, the units(2) to be used for the above are: 

_ - _ _ _ _ _ _ _ _ _ ^ _ _ _ _ _ _ _ _ - - - - - - - - - - - _ - - - - - _ - - - - - -  

h (1) The base time is 0 .0  U T  December 31 of the year previous to the year 

(2) Scale factors are used to  convert the input units to the units used internally 

of launch. 

(ER or AU and h r s )  . Any other set of units may be used by changing 
these scale factors with the appropriate I D  card as described in Section VIII. 
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x, y, z - kilometers 

k, y, - kilometers/second 

t - month, day, hours, minutes, and seconds 
from base time 

The year of launch must also be given. 

B Geodetic Polar Coordinates 

Initial position of the vehicle is given by: 

1. Geodetic latitude (cp) 

2 .  L~ngi tude '~)  (e) , measured from Greenwich 

3 .  Geodetic altitude (h )  

4. Longitude of vernal equinox(3) at initial time ( 8  ) . This 
0 

quantity may be computed by the program o r  may be 
loaded. 

Initial velocity of the vehicle is given by: 

1. Speed ( v )  with respect to the center of the Earth. 

2 .  Flight path azimuth ( A )  measured clockwise from north 
in a plane normal to  the geodetic altitude. 

3 .  Flight path angle (y) measured from a plane normal to 
the geodetic altitude. 

- - - _ - _ _ _ _ _ _ _ _ _ _ _ _ _ - - _ - - - - - _ - - - - _ - - - - - - - - - - - -  
(3) If the right ascension (RA)  at initial time is known, it may be used in 

place of longitude (8). The longitude of the vernal equinox (eo) is then 
set to zero. 
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Initial time of launch from base time") ( t )  must also be given. 

The following units must be used with the above quantities: 

1. cp, 8, and 8 - degrees; h - kilometers 

2 .  A and y - degrees; v - kilometers/second 

3 .  t - month, day, hours, minutes, and seconds 

0 

C Geocentric Polar Coordinates 

Ordinarily an input given in polar coordinates will be interpreted as de- 

scribed in the preceding Paragraph B. However, if NOPT( l )  = If4) the program 

will interpret latitude as declination, height as distance above a spherical Earth 

of equatorial radius, and flight path angle and azimuth with reference to a plane 

normal to the radius vector. 

D Osculating Element Input 

The osculating elements to be input are: 

Argument of perigee 

Longitude of ascending node 

Inclination 

Semi-major axis (in Earth radii) 

Eccentricity 

Time of perigee, mean anomaly, eccentricity 
anomaly, o r  true anomaly (only one) 

The program converts the above to Cartesian coordinates and then 
continues normally. 

(4) See INPUT Section. 

(See Section E, ID = 10.  ) 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - _ - - - - - - - - - - - _ - - - - - - -  
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E Comments 

1. The program computes in Cartesian coordinates. Units  used 

internally in the computation are: 

a. position: Earth Radii (ER)  - Astronomical Units ( A U )  

b. velocity: ER/hour - AU/hour 

c. time: hours 

(Earth Radii units are used in the Earth or Moon reference. 
Astronomical Units are used in the Sun, Venus, M a r s  or 

Jupiter reference. ) 

2. Cartesian coordinates must be used when launching from any body 

other than Earth. Either polar o r  Cartesian coordinates may be 

used when launching from Earth. 

3. Equations for converting the initial conditions from polar to Car-  

tesian coordinates are shown in Appendix H. 
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V. TERMINATING CONDITIONS 

The set of conditions which will terminate a trajectory may @e sum- 

marized as: 

1. Maximum time of flight - hours. 

2.  Maximum distance from any possible reference body con- 
sidered in the solution. Last value in R-vector of integra- 
tion and print block "ARRAY ( l, n, J ) ." 

3 .  Minimum distance from any possible reference body con- 
sidered in the solution. Firs t  value in R-vector of integra- 
tion and print block ARRAY ( l, n, l)* 

Any of these conditions will terminate a trajectory. Loading a large 

number into any of the maxima and a zero into any of the minima will make the 

corresponding conditions inoperative. A proper choice of these numbers will 

permit complete computation of the desired trajectory, avoid extensive unneces- 

s a ry  computation and guard against faulty input. 

* n designates reference body. 

n = l  Earth 
n = 2 Moon 
n = 3  Sun 
n = 4  Venus 
n = 5 M a r s  
n = 6 Jupiter 
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VI. PERMISSIBLE PERTURBATIONS 

The trajectory computation consists of two parts, the exact solution to 

the two-body problem and integrated additions to this solution for the effect of 

perturbations, The successful control of round-off e r ro r s  in the modified 

Encke method depends on preventing the accumulated round-off e r ro r  in the 

integrated perturbation displacement from affecting the computed position. 

This is achieved by always keeping the perturbation displacement small and 

rectifying whenever the perturbation exceeds specified limits. The constants 

mentioned below are used in determining the allowable limits as ratios of the 

perturbation position and velocity to the two-body position and velocity, re- 

spec tivel y . 

This ratio for the position vector is shown in the following sketch. 

/ / I Y X P e r t u r b a t i o n  

Encke Method 
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The recommended values for these ratios are as follows: 

Position Ratio 
0 

POSRCS . 0001 

Velocity Ratio 

VELRCS 

and these are incorporated into the program. Modifications may be 

made by altering the data subroutine. 
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1'11. RADAR INFORMATION PROGRAM ** 

The program may be used to simulate radar data if desired. A maximum 

of 30 stations can be handled at one time. The following information is required 

for each station considered: 

1. Station Name - for identification purposes 

2 .  Position of Radar Station 

a. Longitude (8) of the station from Greenwich - degrees, 
minutes and seconds* - positive eastward. 

b. Geodetic latitude (cp)  of the station - degrees, minutes 
and seconds* - positive north. 

c .  Altitude ( h )  of station above sea level - feet. 

The simulated radar information consists of azimuth, elevation, topo- 

centric right ascension and declination, slant range, and range rate. It is 

printed at every normal print time for which the elevation angle is positive. 

Refraction is not considered. 

This section is coded as a subroutine and may be called at any time. 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - - - - - - - - - - - - - - - - -  
* Alternatively, these quantities may be given in degrees and decimals. Zero's 

must be loaded into the positions reserved for minutes and seconds. 

The fractional parts will not appear in the printout reproducing the station 
coordinates. They will, however, be included in the computation. 

** Not available in this version. 
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VIII. SUBROUTINE MODIF 

Modifications to program constants, which normally remain unchanged 

during the running of a number of cases, may be made by using ID 12 of the 

INPUT in conjunction with a compilation of a subroutine called MODIF. This 

subroutine MODIF must contain the proper common blocks and may include 

data statements, ordinary FORTRAN statements, or read statements. The use 

of read statements is suggested to facilitate stacking of cases. 

Modifications required more frequently may be accomplished through 

the use of other ID(I)'s, as described in the INPUT section (Section M). 

A Radiation Pressure 

Radiation pressure may be included by loading a coefficient into 

RACOE 

The number to be loaded is: 

K C  A r 
m 

** 



B 

C is  the radiation pressure in dynes/cm 2 at a distance of 1 AU r from the Sun. 

-5 dynes 
C = 4 . 6 ~  10 - (estimated value) 

cm r 

2 
A area in cm 

m mass ingrams 

K scaler 3600 2 (23455.) 2 /6378.165 x 10 5 = .11178 x 10 8 
seconds to hours, ER to AU, cm to ER 

The radiation pressure will only be active if sunlight impinges 

on the vehicle. For  correct results the radiation pressure should, 

therefore, be run only in conjunction with the optional shadow compu- 

tation as described in Appendix 0. 

If, however, the expected trajectory may be safely assumed to 

be entirely out of the Earth's shadow, shadow testing may be avoided 

with a consequent saving in machine time. In this case, the following 

modification card must also be included: 

** SHDN = 1.  

Aerodynamic Drag 

If inclusion of the aerodynamic drag is desired, the drag parameter 

1/2 C A/m may be loaded into subroutine MODIF by means of 

the following card: 
D 
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** COEFL = 

2 The units of C Aim are the area in cm 

A layered atmosphere rotating with the Earth is assumed. The 

density is obtained by a linear interpolation of the density-altitude 

table. The above may be incorporated into the DATA subroutine. 

and the mass in grams. D 

C Atmospheric Tables 

Atmospheric tables for  the drag computation are stored in core. They 

correspond to model # 7, contained in Report # 25 (Reference 2) of the 

Smithsonian Astrophysical Observatory, fitted to the ARDC Model At- 

mosphere of 1956 (Reference 3) at low altitudes. The units for the air 

density are grams/cm3 and the height is given in ER from the center 

of the Earth. If it is desired to change this atmosphere, the following 

procedure has to be followed: 

* NTAR = The number to be 
entered is N - the 
number of entries in 
the density table. 

** RTBL(1) = 1 = 1 , 2 , - - - , N  - the 
values of r for which 
densities are given, in 
ascending order (a maxi- 
mum of 5 0 ) .  
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** RHOT(1) = I = 1 , 2 , -  - - , N  - the 
values for the air density 
in grams/cm3 in respec- 
tive order corresponding 
to the preceding r table. 

If other units are used f o r  the density table, the drag parameter described 

in Part B of this section must be read in with like units and the constant 

(-6378.16535)** normally in DRSC has to be changed accordingly. The 

negative sign directs the drag force opposite to the velocity. This constant 
2 

converts the drag from the units used for  A, M and p to ER/hour . 

Conversion constant ** DRSC = 

+ 
D Printout 

The program provides a special printout described in the OUTPUT section 

(Section X-B-4) near the Earth, Moon, Sun, Venus, Mars  and Jupiter. 

This printout occurs at every integration step and is useful for observing 

the behavior of these relevant quantities during ascent and re-entry. This 

feature is triggered by the following modification cards: 

** SERE(1) = I = l , 2 , -  - - ,6 
Radial distance from 
indexed planet. 

For printout near Earth use index 1 in ER units 
Moon 2 ER 
Sun 3 AU 
Venus 4 AU 
M a r s  5 AU 
Jupiter 6 AU 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - . - - - - - - - - - - - - - - - - - - - - - - - - -  

** Floating point numbers 
+ 

Not available in this version 
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The numbers used above are  the radial distances within which the special 

printout is to be effective. The units a re  earth radii for  the Earth and Moon 

references and astronomical units for the Sun, Venus, M a r s  and Jupiter 

references. A zero in any of the SERE( I)  cards suppresses this feature. 

E Ephemeris Time 

The planetary coordinates are interpolated using ephemeris time. 

E T  = UT + A T E  

An approximate value of A T E  (35 seconds) is used. To change this 

quantity, the following card, giving AT E in hours, is inserted: 

** 
ETMUT = The value for A T  E - 

hours. 

To restore original quantity: 

ETMUT = ,009888888889** A T E  is 35 seconds. 
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XX. I N P U T  

Input to the program is read in as follows: 

Each set of input is preceded by an ID card which contains a fixed point 

number terminating in column 10. This card may also contain Hollerith 

information starting in column 11. 

ID = 1 Permits one card of Hollerith information - usually used 

for case identification. 

ID = 2 Permits one card containing a set of 72 fixed point 1's 

or  0 ' s .  Each flag (1 or 0) corresponds to the same 

numbered subroutine. A zero is used for normal opera- 

tion and a one is used to print diagnostic information in 

the proper subroutine. A blank card after ID = 2 will 

be necessary if the system does not zero out core before 

load time and normal operation is desired. In the pro- 

gram, these flags are referred to as NC( I ) .  

ID = 3 Performs similarly to ID = 2. It allows a card of 1's 

and 0's to be read into NOPT( I )  ( I  = 1 to 72) .  These 

flags permit the incorporation of various options into 

the program. 

tions: 

NOPT(1) = 1 

= 2  

NOPT (2-13) 

= O  

= 1  

Following are the currently available op- 

indicates polar geocentric coordinates 

indicates geodetic coordinates when polar 

load is used. 

are used for print options. 

indicates no print 

indicates print 
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N@PT( 2 )  

NOPT(  3 ) 

NOPT(  4) 

NOPT(  5)  

NOPT(  6 )  

NOPT(  7 ) 

NOPT ( 8 ) 

NOPT(  9 ) 

NOPT(  1 0 )  

NOPT(  1 1 )  

NOPT(  1 2 )  

NOPT(  1 3 )  

NOPT(  14) =1 

NOPT( 15) =1 

NOPT(  1 6 )  =1 

NOPT(  1 7 )  =1 

NOPT(  67) =1 

NOPT(  6 8 )  =1 

NOPT(  69) = 1 

NOPT(  71 )  =1 

is associated with X R  print 

is associated with XRDT print 

is associated with XVE print 

is associated with XVM print 

is associated with XME print 

is associated with X V S  print 

is associated with XWN print 

is associated with XVMR print 

is associated with XVJP print 

is associated with XI print 

is associated with XIDT print 

is associated with D2XI print 

prints data statement parameters 

deletes regular print after rectification 

deletes print in rectification 

activates shadow routine 

activates a backward integration at  TIME L 

(maximum time) 

osculating print for solar engine 

activates solar engine 

activates Beta Integrator 

ID = 4 Used to read in start time of flight in year, month, day, hours, 

minutes, and seconds; starting reference body; and target 

reference using the following format ( 515, F5.2, 215). The 

reference bodies are numbered as follows: 

1 =Ear th  4 = Venus 

2 =Moon 5 = M a r s  

3 =Sun 6 =Jupiter 
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ID = 5 Used for polar load and reads in 8, cp, altitude, velocity, 

azimuth, y,  and 8 . Format used is (7E10.0). The angles 

are in degrees. Altitude is in kilometers from the surface 

of the Earth, and the velocity is in kilometers per second. 

If 6 is read in as l O O O . ,  the program will compute the 

proper 8 .  

0 

0 

0 

ID = 6 Used for Cartesian input. x, y, z , k, y, and 2 are read 

in with the format (6E10.0) .  The program expects these 

coordinates to be equatorial in kilometers and kilometers 

per second, with the starting reference body as center. 

ID = 7 This option generates initial conditions for a trajectory 

which is designed to get a spacecraft to the target within 

a specified number of days, without thrust. The input is: 

the Julian date of start time with the first three digits re- 

moved, the time of flight in days, option number, and de- 

sired radius of parking orbit, with a format of (4E10 .0 ) .  

Option number 1 starts in  Sun reference 

Option number 2 starts in Earth reference. 

ID = 8 This ID permits one to read in a vector of special print 

times. The first card after the ID card contains the num- 

ber of such print times from 1 to 50, format (110). 

The following card or cards contain the times, format 

( 7E10.0). If this ID is used in conjunction with NOPT( 69)  

(solar engine option), these times are used for starting 

and stopping the solar engine. Odd numbers start the en- 

gine, the even numbers shut the engine off. 
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ID = 9 This ID reads in the following: PRSP, TESP, TIMEL, STI, 

V I ,  CCNT, and ENPLAN using format (7E10.0) .  

PRSP is print suppress time - normal print times 

will be suppressed until this time is reached. 

TESP is a trigger for calculating impact planes. A 

non-zero value activates this option. 

is the maximum time of flight. 

is a trigger for iterating on moon trajectories. 

A non-zero value activates this option. 

TIMEL 

S TI 

VI is a trigger for activating subroutine VIT 

which may be altered for various iterations. 

CCNT triggers the nodal crossing print. It must be 
th an integer n.  Every n crossing is printed. 

ENPLAN is the number of bodies to be used in the cal- 

culations. This must be an integer from 1-6. 

If 1 is used, the ephemeris tape is not used. 

ID = 1OThis ID permits one to load the initial conditions as osculating 

elements of an ellipse. The following are read in: SOMEG 

LOMEG INC A ,  ECC ELOAD ELTRIG with format ( 7E10.0). 

SOMEG 

LOMEG 

A is the semi-major axis 

ECC is the eccentricity 

ELOAD depends on ELTRIG 

is the argument of perigee 

is the longitude of the ascending node 

If ELTRIG = 1  ELOAD = time of perigee 

ELTRIG = 2 

ELTRIG = 3 

ELTRIG = 4 

ELOAD = mean anomaly 

ELOAD = eccentric anomaly 

ELOAD = true anomaly 
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ID = 11Permits one to alter the integration and print intervals of the 

various reference bodies. The number of cards to be read is 

a function of ENPLAN. If ENPLAN is 6 ,  all reference bodies 

are expected and a re  read in with format ( 8E9.0) as follows: 

Card 1 contains eight distances from Earth in ER 

2 contains seven integration intervals in hrs .  

3 contains seven print intervals in hrs .  

4 contains eight distances from the Moon in ER 

5 contains seven integration intervals in hrs .  

6 contains seven print intervals in hrs .  

7 contains eight distances from the Sun in AU 

8 contains seven integration intervals in hrs .  

9 contains seven print intervals in hrs .  

10 contains eight distances from Venus in AU 

11 contains seven integration intervals in hrs .  

12 contains seven print intervals in hrs .  

13 contains eight distances from Mars in AU 

14 contains seven integration intervals in hrs .  

15 contains seven print intervals in  hrs .  

16 contains eight distances from Jupiter in AU 

1 7  contains seven integration intervals in h r s  . 
18 contains seven print intervals in hrs .  

ID = 12Permits one to make changes in the program's built-in data o r  

to read in other-than-normal inputs. This can be done by using 

a subroutine called MODIF which must contain the proper block 

common. 

ID = 13Allows one to change input and output scale factors, using for- 

mat ( 3 E l l .  0 ) .  The card following the ID card contains 

TSCL, REKM, and XMDKM. 
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TSCL 

REKM 

XMDKM 

is the time scale factor and sits in the program 

as 3600. It is used to change seconds to hours 

and hours to seconds. 

sits in the program as 6378.165, the number 

of kilometers in one ER. 

sits as 14.9599 x lo7 and is the number of kilo- 

meters in one AU. 

ID = 14 sets triggers for apogee, perigee, and nodal crossing prints. 

The following card reads in ICANT , ICPNT, and ICCNT , 
using format (3110) 

ICANT = n printsevery n apogee 

ICPNT = n prints every n perigee 

ICCNT = n 

th 

th 

prints every nth nodal crossing 

ID = 15Permits the reading in of the oblateness and tesseral harmonic 

coefficients, format ( 11E6.0). Six cards must follow the ID 

card as follows: 

J2O(I ) ,  J22( I ) ,  J3O(I), J31( I ) ,  J 3 3 ( I ) ,  J4O(I), L22(I) ,  

L 33( I), RADIUS( I), TESSTR( I ) .  

I = 1-6 representing the reference body. TESSTR( I) is a 

trigger for  the inclusion or deletion of tesseral harmonics 

for the reference body involved. 

TESSTR( I) = 1 

TESSTR( I )  = 0 

calculates tesseral harmonic coefficients 

by-passes tesseral calculations. 

ID = 16 Allows radar station data to be read in. The card following 

the ID card contains the number of stations to be read in 

with format (I 10). The next two cards contain the name and 

coordinates of the first station with format (4A6bE10.0). 

This last format is repeated until all stations have been ac- 

counted for. 



ID = 1 7  is used for  reading in solar engine information. 

See Appendix 

ID = 18 is used for the iterator. 

This option is not available in this version. 

ID = 20Starts the program 

ID = 4 must precede ID = 9 which also precedes ID = 11, since ID = 11 

uses ENPLAN. Except for the preceding condition and ID = 20 which must be 

read in last, the ID'S may be read in randomly. However, the user must bear 

in mind that the last ID read in prevails in a case where several conflicting 

ones are used. For  example, if the Cartesian, polar and element load were in 

the input deck at the same time, the last one to be read in would take control of 

the program. 
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x. OUTPUT 

A Program Outputs 

The following information is printed as the output of the program. 

1. Title 

2 .  Case number and any identifying titles. 

3.  Launch time - days, hours, minutes, seconds. 

4. Input - in the same units as they were entered into the 
program. 

5. List of parameters used in run. 

6 .  At each rectification the following data are printed: 

( b )  RECTIFICATION PRINT ( a )  REFERENCE 

PERT OVER UNPERT = ( c )  TIME = ( d )  DELTAT= ( e )  

( a )  Reference body 

( b )  and ( c )  indicate the reason for rectification 

( c )  If ( c )  = 0, rectification may be due either to switch 
of reference body or  to change of integration interval. 

If ( c )  # 0, then the position, velocity, acceleration 
perturbations or the incremental eccentric anomaly 
have exceeded the permissible limits and ( b )  indicates 
which has been exceeded (see Section VI) .  These in- 
dications are given as: 

P O  - Position 
VL - Velocity 
TH - Incremental eccentric anomaly 

( d )  Time of rectification 

( e ) Integration interval 
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---- TIME IN DAYS, HRS, MINS, SECS, 

T =  

XR YR ZR RR 

XRDT YRDT ZRDT RRDT 

RIGHT ASCENSION (DEG) = DECL = 

EARTH SUBSAT POINT LONG = 

GEOCENTRIC 

LAT 

HT 

GHA 

AZIMUTH 

E LEVATION 

GEODETIC AZIMUTH 

E LEVATION 

Days, hours, minutes, seconds from time of launch 

Print  time in hours from time of launch 

Position coordinates and magnitude of radius vector with 
respect to the reference body - kilometers 

Velocity components and magnitude of velocity vector with 
respect to the reference body - kilometers/second 

Right ascension and declination in Earth reference system - 
degrees 

Longitude o r  sub-satellite point - degrees 

Latitude (geodetic) - degrees 

Geodetic height above the Earth's surface - kilometers 

Greenwich hour angle - degrees 

Geocentric flight path azimuth - degrees 

Geocentric flight path angle - degrees 

Geodetic flight path azimuth - degrees 

Geodetic flight path angle - degrees 
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MOON SUBSAT POINT LONG = 

LAT = 

AZIM = 

ELEV 

OSCULATING ELEMENTS AT TIME T = 

TRUEANOMALY = 

SEM MAJ AXlS - - 

- ECCENT - 

- PERICENT - 

- APOCENT - 

INCLINATION - - 

Moon longitude - angle between the projection of the vector 
from the Moon to the vehicle onto the Moon's orbital plane 
and the Moon-Earth vector (Moon reference only) - degrees 

Moon latitude - angle between the radius vector connecting 
the Moon and the vehicle and its projection onto the orbital 
plane of the Moon about the Earth (Moon reference only) - 
degrees 

Selenocentric flight path azimuth - degrees 

Selenocentric flight path angle - degrees 

True anomaly - degrees 

Semi-major axis of trajectory - ER + = ellipse 
- = hyperbola 

Eccentricity of trajectory** 

Closest distance to the reference body (not necessarily the 
Earth)** - kilometers 

Farthest distance from the reference body (not necessarily 
the Earth) **(meaningful only for elliptic orbits) - kilometers 

Inclination of the orbital plane defined as the angle between 
the positive polar axis and the angular momentum vector** - 
degrees 

** These are the osculating values and hence only constitute an estimate of the 
quantities described. 
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- ARG PERIC - 

- PERIOD - 

- MEAN MOT - 

- R A ASC NODE - 

M ANOMALY - - 

- E ANOMALY - 

T PERIC - - 

UNIT PERICENTER POSITION VECTOR = 

UNIT A N G U M  MOMENTUM VECTOR = 

Argument of pericenter - angle measured from the ascending 
node to the pericenter vector**- degrees. 

Set to zero for  circular orbits and poorly determined for near- 
circular orbits. 

Period * *- hours 

Mean motion**- radians/hour 

Right ascension of the ascending node measured from the 
vernal equinox eastward along the equator**- degrees 

Mean anomaly** - radians 

Eccentric anomaly** - radians 

Time of nearest pericenter** - hours 

Components of the unit vector directed from reference toward 
pericenter** 

Components of the unit angular momentum vector 
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B Optional Outputs 

1. XVE 

XVM 

XME 

X V S  

XVVN 

XVMR 

XVJ P 

XI 

XIDT 

D2XI 

YVE = ZVE 

YVM = ZVM 

- - 

- - 

YME = ZME - - 

YVS = zvs - - 

YVVN = ZVVN - - 

YVMR = z v m  - - 

YVJP = Z V J P  - - 

ETA = ZETA - - 

RVE = - - 

- RVM = - 

RME = - - 

RVS = - - 

R W N  = - - 

- - RVMR = 

RVJP = 

PERT = 

- - 

- - 

VPERT = ETADT = ZETADT = 

DBETA = DBZETA = APERT = 

- - 

- - 

The above optional output appears between XRDT and RIGHT ASCENSION 

in the standard output. For  instructions on how to obtain, see Section IX, ID= 3.  

Coordinates of vehicle with respect to the Earth - kilometers 

Coordinates of vehicle with respect to the Moon - kilometers 

Coordinates of the Moon with respect to the Earth - kilometers 

Coordinates of vehicle with respect to the Sun - kilometers 

Coordinates of vehicle with respect to Venus - kilometers 

Coordinates of vehicle with respect to M a r s  - kilometers 

Coordinates of vehicle with respect to Jupiter - kilometers 

Perturbation vector and magnitude of the perturbations with 
respect to the reference body - kilometers 

Perturbation velocity vector and magnitude - kilometers/second 

Perturbation acceleration vector and magnitude - kilometers/second 
2 
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2. Shadow Print 

PENUMBRA SHADOW 

PENUMBRA SUN 

PASSAGE FROM 

TO i PENUMBRA 

f SHADOW 

AT (a )  TIME IN { ::FMBRA } ( b )  ACCUMULATED TIME ( c )  

[ PENUMBRA ) 

The above optional output appears before TIME IN DAYS, HRS, MINS, SECS 

in the standard output. It is controlled through the INPUT subroutine 

LNOPT(17) 1 (see Section IX, ID=3).  

( a )  Time at which vehicle traverses denoted shadow boundary - hours 

( b )  Total time the vehicle spends in denoted shadow region during 
current traverse - hours 

( c )  Total accumulated time spend in denoted shadow region since 
launch - hours 
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3 .  Radar Output 

STATION ( a )  

AZIMUTH ( b )  
ELEVATION ( b )  

TOPOC. R A  ( c )  
TOPOC. DECL. ( c )  

SLT RNG ( d )  

RANGE ( e )  

This output appears at the tail end of a normal printout. An ID 

card in the INPUT subroutine will control this segment of the 

program (see Section M, ID = 16). 

( a )  

( b )  

( c )  

( d )  

( e )  

Station name (identification) for each station 

Azimuth and elevation with respect to each station - degrees 

Topocentric right ascension and declination with respect to 
each station - degrees 

The slant range to each station - kilometers 

Rate of change of slant range for  each station - kilometers/ 
second 

If the elevation is negative (the vehicle is below the horizon), this print 

is suppressed for the station in question. 
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4. Reentry Output 

REENTRY PRINT TIME INERTIAL SPEED 
(kilometer s/second) 

Right ascension, declination, Earth subsatellite points and flight path 

azimuth and angle as given above. 

The above optional output appears between GEOD ELEV and MOON 

SUBSAT POINT in the standard output. 

5 .  Trajectory Search Output 

The output consists of the normal ITEM output for a nominal trajectory 

and the same trajectory output for each variation requested for each 

iteration. The output format used only for the trajectory search follows: 

( a )  

( b )  

( c )  

( d )  

(e  ) 

( f )  

( g )  

Change in latitude - degress 

Change in longitude - degrees 

Change in altitude - kilometers 

Change in velocity - kilometers/second 

Change in azimuth - degrees 

Change in flight path angle - degrees 

Change in initial time - hours 
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5. Trajectory Search Output (cont.) 

QUANTITY CODE ( a )  

QUANTITIES (b  ) 

REQUIRED ACCURACY ( c )  

MATRIX OF PARTIAL DERIVATIVES ( d )  

DESIRED VALUES OF ABOVE 

RESIDUALS AND CHANGES IN 
INITIAL CONDITIONS --- ( e )  ( f )  ( g )  

Code indicating quantities (up to 7) to be searched for. 

Desired values of above quantities - degrees, kilometers, 
seconds. 

Tolerances allowed on zbove values - degrees, kilometers, 
seconds. 

Matrix with the dependent variables arranged by row. The 
independent by column. 

Residuals (desired-nominal) of quantities designated by the 
quantity code. 

Change required in init ial  conditions. 

Normalized changes in initial quantities in order of the 
variations. 

The option associated with trajectory search routines is  initiated 

by an ID card in the INPUT subroutine (see Section M, ID=18). 
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XI. INTERNAL PROCEDURES 

A Units 

The units used internally are Earth Radii and Earth Radii/hour 

in the Earth and Moon references, and Astronomical Units and Astro- 

nomical Units/hour in the Sun, Venus, Mars  and Jupiter reference 

systems. 

B Ephemeris Tape 

The relative positions of the solar system bodies are  obtained 

from a tape generated by the Jet Propulsion Laboratory. A separate 

program prepares a binary tape referred to the mean equinox of MID- 

FILE: containing 16 days per record, in a form compatible with the 

main program. The main program searches the tape and reads in the 

proper file and record, keeping 32 days of tables in core storage at  

a time. 

The first record on each file* consists of the year, number of 

records and number of files* in fixed decimal form. Each of the suc- 

cessive records contains the following information: 

Word 1: Initial time of record in hours from base time. 

( 0.0 UT December 31 of year previous to launch) h 
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Equatorial coordinates of Mercury in two-day intervals follow ( 9  x 

values, 9 y values, 9 z values). Then 27  consecutive five-word 

blocks containing the equatorial coordinates, in four-day intervals, of 

XVNE 

XSE 

XAS 

XTS  

XSAS 

xus 
XNS 

X P S  

XBS 

YVNE 

YSE 

YAS 

YJS 

YSAS 

YUS 

YNS 

YPS 

YBS 

ZVNE 

ZSE 

ZAS 

Z JS  

ZSAS 

zus 
ZNS 

ZPS 

ZBS 

Venus with respect to the Sun 

Sun with respect to the Earth 

Mars with respect to the Sun 

Jupiter with respect to the Sun 

Saturn with respect to the Sun 

Uranus with respect to the Sun 

Neptune with respect to the Sun 

Pluto with respect to the Sun 

Earth-Moon barycenter with 
respect to the Sun 

are followed by three 32-word blocks containing the equatorial coordinates 

of the 

XME YME ZME Moon with respect to Earth 

h h  The Moon coordinates are stored in half-day intervals ( 0 . 0  , 12 . 0 UT) 

with distance measured in ER. All other tables are in AU. 

The equatorial coordinates of the planets and of the Moon are 

followed by their velocities, in exactly the same order. Moon velocities 

are in ER/day. All other velocities are in AU/day. 

At present, an ephemeris tape is available for 1968-1982, written 

in 15 two-year groups, each of which overlaps one year. 
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C Ephemeris in Core 

The astronomical tables are stored in core in 96-hour intervals 

for the Sun and the planets, and 12-hour intervals for the Moon. There 

are always 32-days of tables available, arranged in such a way that the 

value of time for which the interpolation takes place is not near either 

end of the table. 

In location TABLE( l ) ,  the time of the first entry from the 

initial time is stored. In TABLE( 2 )  to TABLE( 10)  there are 9 

x coordinates of the Sun with respect to the Earth. The following 

chart indicates the storage locations of the remaining astronomical 

data to be saved. 

TABLE( 11) 

TABLE( 20) 

TABLE( 29) 

TAB LE ( 56 ) 

TABLE ( 83 ) 

to 

to 

to 

to 

to 

TABLE( 299) to 

TAB LE ( 364 ) to 

TABLE (429 ) to 

TABLE( 19 ) 

TABLE( 28) 

TABLE ( 55)  

TABLE( 82) 

TABLE ( 109 ) 

TABLE( 363) 

TABLE ( 428 ) 

TABLE (493) 

y coordinates of the Sun with 
respect to the Earth 

respect to the Earth 

with respect to the Sun 

z coordinates of the Sun with 

x, y, z coordinates of Jupiter 

x, y, z coordinates of M a r s  
with respect to the Sun 

x, y, z coordinates of Venus 
with respect to the Sun 

x coordinates of the Moon with 
respect to the Earth 

respect to the Earth 

respect to the Earth 

y coordinates of the Moon with 

z coordinates of the Moon with 

These are followed by the velocities: 
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TABLE( 494) to TABLE( 520) k, y, B coordinates of the Sun 
with respect to the Earth 

. . .  
TABLE( 521 j to TABLE( 547) x, y, z Coordinates of Jupiter 

TABLE( 548) to TABLE( 574) x, y, z coordinates of M a r s  

TABLE( 575) to TABLE( 601) i, y, i coordinates of Venus 

TABLE( 791) to TABLE( 985) i, y, i coordinates of the Moon 

with respect to the Sun 
. . .  
with respect to the Sun 

with respect to the Sun 

with respect to Earth 

D Perturbation Program 

The perturbation program solves three differential equations for 

XI, ETA, ZETA. The differential equation for XI, with the various 

terms replaced by the storages containing them, is representative of all 

three equations and is given below: 

D 2x1 = - GME [VCOR( 1)/VCOR( 4 )  - COMP( l)/COMP( 4 )  I 
- GMVN LVCOR( 19)/VCOR( 22) - COMP( 19)/COMP( 22) I 
- GMS LVCOR( 13)/VCOR( 16) - COMP( 13)/COMP( 1 6 )  I 
- GMMR LVCOR( 25)/VCOR( 28) - COMP( 25)/COMP( 28) 1 
- GMJP [VCOR( 31)/VCOR( 34) - COMP( 31)/COMP( 34) I 
- GMM [VCOR( 7)/VCOR( 1 0 )  - COMP( 7)/COMP( 10) I 
+ OTHER PERTURBATIONS 

2 
where, for example, in the first term GME = K 

Earth, and VCOR( 4) is the length cubed of the vector LVCOR( l), 

VCOR( 2 ) ,  VCOR( 3)l. Similarly, in the other terms the denominator 

is the mass of the 
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is the length cubed of the vector containing the corresponding numerator. 

In the case where the two terms within each of the brackets are nearly 

equal, they a re  computed by the special method described in Appendix E 

to avoid loss of accuracy. 

The contents of the COMP storage at any time, t depends upon 

the reference origin at that time. 

CONTENTS OF COMP STORAGE 

Earth Moon Sun Venus Mars Jupiter 
Ref. Ref. Ref. Ref. Ref. Ref. COMP( I )  - 

XVEO XME XSE XVNE XMRE XJPE (I), (2)Y ( 3 ) = x ,  YY z 

XEM XVMO XSM XVMM XMRM XJPM ( 7 ) s  ( 8 ) ,  ( 9 )  

XES XMS xvso XVNS X M R S  XJPS (13)Y (14)Y (15) 

(4), (5) ,  ( 6 )  =R3,R,R2 

XEVN XMVN XSVN XVVNO XMRVN XJPVN (19),  (20),  (21) 

XEMR XMMR XSMR XVNMR XVMRO XJPMR (25),  (26), ( 2 7 )  

XEJP W P  XSJP XVNJP XMRJP XVJPO (31)Y (32)Y ( 3 3 )  

Here  XVE refers to the x component of the vehicle with respect to the 

Earth, with corresponding definitions for the other quantities. An addi- 

tional subscript of 0 denotes quantity derived from the two-body problem. 

CONTENTS OF VCOR STORAGE 

All 
Refs. VCOR( 11 

3 2 
XVE (I), (2),  ( 3 ) ,  (4), (5) ,  ( 6 ) = x ,  Y, z, R , R ,  R 

XVM 

xvs 
xvvN 
XVMR 

XVJ P 
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B. EQUATIONS OF MOTION 

In a Newtonian system, the equations of motion of a particle in the 

gravitational field of n attracting bodies and subject to other perturbing 

accelerations such as thrust, drag, oblateness, radiation pressure, etc. 

are given by 

These equations are  put into observable form by referring them to a 

reference body c. The equations of motion of the reference body are  

Subtraction of Equation (B. 2) from Equation (B. 1) results in the equations 

of motion of the vehicle with respect to the reference body c .  

R n R R 

r r 
R .. = - ( p v + p c ) <  -1 pi[* - A] + I F j  vc 3 

vi ci  j 

B-1 



A. 

MATHEMATICAL APPENDIX 

INTRODUCTION 

The problem of orbit determination over long time periods requires 

a precise technique for integrating the equations of motion. Reference 

4 contains an analysis of an integration procedure that yields the mini- 

mum loss of information due to the accumulation of numerical round-off 

e r rors .  The Encke perturbation method has been shown to require 

minimum machine computation time for a minimum loss of numerical 

accuracy. The orbit prediction scheme presented herein uses a modified 

form of the Encke method with the initial position and velocity vectors 

replacing the conventional P and Q vectors of the Encke scheme. 

By avoiding reference to the position of perigee, it is possible to avoid 

numerical ambiguities arising from near-circular orbits and orbits of 

low inclination. 
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c.  METHOD O F  INTEGRATION 

If Ecpation (B. 3) is integrated directly by some numerical scheme, 

there results, after a number of step-by-step integrations, an accumu- 

lation of e r ro r  which leads to inaccurate results. To avoid this loss in 

precision, it is convenient to write Equation (B. 3) in the form 

.. .. .. 
R vc = % + A R  

The velocity and displacement vectors can be written as 

R vc = ~ + A R  

The reference body (the one in whose sphere of influence the vehicle 

travels) is chosen so as to  minimize the perturbations. 

In this method R is taken as k 

k 
and 

Equations (C. 4) constitute the equations of motion of the Kepler problem 

and are  solved as described in Appendix D. 
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Equations (C. 5) are  integrated numerically. The integration scheme 

employed by the ITEM program is a sixth order backward difference 

scheme, initiated by a Runge-Kutta scheme. The routine used is a Newton- 

Gregory integration scheme for second order difference equations written 

by S. Pines and J. Mohan of Analytical Mechanics Associates, Inc. 

As derived in Appendix D, the solution of the Kepler problem may 

the scalar a and the rectifica- 
0’ 

be represented by the vectors R 

tion time t . 
0 

The rectification process consists of moving R R into the 

and the computation of a and n. 
vc’  vc 

locations R and Ro, t into t 
0 0 

For computational convenience, the coefficients appearing in Equa- 

tions (D. 2) a re  also computed during rectification. 
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D. SOLUTION OF THE KEPLER TWO-BODY PROBLEM 

The unified formulation of the two-body problem is used for both 

elliptic and hyperbolic cases. 

03 

l a  a 2 (-a+ 
F ( Q ) =  - - -  
1 6 120 5040 (ai +3) ! 

i = O  

9 m 

F (Q) = 1 - a  F1 3 

l - a F 2  

and 

1 2  
r f = l---(S F2 
0 

1 2  g =  I - -  
r F2 
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where 

d = R ' R  
0 0 0  

R = f R o + g R o  

V k  = R * R  
0 0 0  

a is determined from the modified Kepler equation 

See Figure 1 for the two-body orbit which results from the solution of 

Equation (C. 4) with the initial conditions: 

% ( t ) =  0 R vc ( t ) =  0 R 0 
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y Axis 

I 
t 

Figure 1 - Geometry of the Elliptic Two-Body Orbit 
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E. COMPUTATION OF PERTURBATION TERMS 

The terms accounting for the Encke term and the planetary per- 

turbations appearing on the right hand side of Equation (C . 5 )  involve 
R R o  numerous terms of the form --- where R and R may differ 

r r  

only by small amounts. For the Encke term, for instance R -  R = 6 
which is small, ~d for the planetary perturbations, the difference is 

R 

3 3  0 

0 

0 

which also often is small. vc 

A computation scheme, which avoids loss of precision due to the 

subtraction of nearly equal terms and which also is correct when R 

is not small, is employed. This scheme is described below: Find 
VC 

R 
R 0 

3 3  r r 
- - -  

0 

u = 7 ( R o + - A R ) . A R  2 1 
2 

v 
L 

0 

3 2  
R Ro AR + R(u + 3 u  + 3 u )  - - - =  - 
n n n n a J a 

r r 0 r 0 (1 + $) 
r 
0 
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F. CONCLUSIONS 

The method presented yields accurate trajectories using relatively 

little computer time. Summarizing some of the important features: 

1. All significant solar system bodies may be included 
without undue complications. 

2. Since the perturbations only are  integrated, the allow- 
able integration interval is fairly large over most of 
the path. Even in the vicinity of Earth o r  another planet 
a relatively large interval (compared to other schemes) 
may be used without limiting the stability and accuracy 
of the solutions. 

3. The perturbations are kept small in two ways. First ,  
the two-body orbit is rectified whenever the perturba- 
tions exceed a specified maximum value compared to 
the corresponding unperturbed values. 
e r r o r  build-up with respect to a particular reference 
body. Second, the reference body of the two-body 
problem is changed from Earth, to Sun, to planet ac- 
cordingly, as that reference body would contribute the 
largest perturbing force otherwise. 

This limits 

4. This method will handle circular orbits, zero inclina- 
tion, etc. The problem is defined in terms of parameters 
which have real physical significance (namely, the posi- 
tion and velocity vectors) which a re  directly relatable to 
measurable quantities. 
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G. OBLATENESS TERMS 

The oblateness perturbation terms in Equations (C. 5) are  derived 

from the potential given by the following equation: 

2 1  
a 2  

cp = E{-( : )  [ 3  
r J20 2 ( r )  - 21 

where a is the equatorial radius of the earth. e 

This vector can be written in the form 

6 

where k is a unit vector in the z-direction. 

4 
a r 3 1 5  z 4  105 z 151'1 +($) ~ 4 0 L 7 ( ; )  - -  4 ' 2  -TU 
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The perturbation acceleration due to tesseral harmonics are computed. 

2 1 3 2 1 3  
Constants: J2 J3 J 3 ,  A,, X3 A, 

2 
2 

J = -1.9E-6 2 0 x = -21. 2 

1 1 

3 3 
J = -1.51E-6 x = o  

3 3 0 
= 22.8 3 

J = - .149E-6 3 

(G. 3) 

In initialization: 

C. j = J. j c o s j x  j 
1 1 i 

S. j = J. j sin jk. j 
1 1 1 

are x' y' , z' 

F Term 
22 

XY 
B2,= -5- 2 r 
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3y r 2 2 

r 
= - C (2x-xA ) + 2 S 2 ( y - x B  )} 

F22x7 5 'i 2 22 22 

3 P r  2 2 
= - C ( -2y-yA ) + 2 S 2 ( x - y B  )] 

F22y' 5 1 2 22 22 r 

3iL 2 2 
F22z7 = - ( C 2 ( - ~ A 2 2 )  5 + 2 S 2 ( - z B  22 )I J 

r 

x y z are earth fixed coordinates. x y in the equatorial 

plane, the x-axis toward the Greenwich meridian. Nutation is 

neglected. 

F Term 31 

2 2 2  KQ1= (42 - X  - y  ) 

7x 
A31= TK31 r 

7Y 

r B31 = 2 K31 

- crJC1[K - 2x2-xA 1 + S 1 [-2xy-xB 1 1 - F31x' - 2 7 1 3 31 31 3 31 J r 

3 P  1 1 2 
F31y, = 5 7 { C3[- 2xy - y  A 31 1 + S3[ KQ1 - 2y - y B311'1 

r 

L-!C C8xz-zA 31 1 + S 3 [ 8 y z - ~ B ~ ~ l ) -  
r 

1 1 - 
F31z' - 2 7 C 3 

(G. 7) 
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F Term 33 

7x 2 2 

r 
A33 = - 3Y ) 

7Y 2 2 

r 
B 3 3 =  - ( 3 ~  - y  ) 2 

1 5 p  3 2 3 -l 

F33x~ = - {C3[3 (x2-y  7 ) - x A  33 1 + S3[6xy-xB 33 J 
r 

3 3 
F33z1 = 7 1  15’ ‘C 3 C - Z A ~ ~ ]  - S3 [ Z B ~ ~ ] }  

r 

(G. 10) 

(G. 11) 

(G. 12) 

G-4 



H. TRXNSFORiMATLON EQUATIONS FROM GEODETIC POLAR 
COORUINATES TO CARTESIAN COORDINATES;:: 

T L  I l e  geodet ic  polar coordinates in the progra,ln a r e  r e fe r r ed  to  

;in ellipsoid of revolution. The  equation of a c r o s s  section is  given 
b y  

2 x 2  z - + -  - - 1  
a 2  b 2  

w h e r e  

b2  = a 2 ( 1 - e ? )  

The  slope of the normal ,  along which h is measu red  is  given by 

(See Figure 2) (H .2 )  

dx 

and 

b2 
a 

- _  2 -  - t a n 4  ( 1 - e 2 )  t a n p  
t an+’  X 

Eliminating x between equations (H .1 )  and (H.2)  and solving for  z 
r e s u l t s  in: 

a (I - e’) s i n +  
( I  - e2 s i n 2  

z -  

:::For geocentric (i.e. e 2  = 0) polar coordinates,  c = s 1 .  In this 
c a s e  t he  latitude input is interpreted as declination. 
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Z 

P 

. 
' 

Figure 2 - Relation Between Declination, Geocentric 
and Geodetic Latitudes 

and f r o m  equation ( H . 2 )  then 

a cos @ 

(I - e2 sin2 +) ' I2  
x =  

H-2 



In  u n i t s  of a e , R  and R a r e  then given by equation ( H .  3 )  

c - (1 -. .2 s i n 2  $) - 1 y 2  

s ( 1 -  e ' )  c 

x = \ C  + h l  C O S @ C O S  ( t j - g 0 )  

y = I C  + h ;  cos 4 s in  ( 0  - d o )  

Z i s  s i n 4  

= v { ( s in  , ,cos4--cos 'ycosAsin( i ; )  cos ("go) 

- cos y sinA s in  (ti - d o ) }  

$ = v { i s in ,ycos@-cosycosAsinrp i  s i n  ( d - B o )  

+ cos y s i n  Acos (0 - 0,)) 

t - - v { s inys inc$+cosycosAcos4  

These  equations include the effect of the rotation of the ea r th .  
longitude of the verna l  equinox ( B o )  at launch t ime is computed by 
the p rogram f r o m  Newcomb's formula. 

The 
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TRANSFORMATION EQUATIONS FOR RADAR SIMULATION 

The program computes sight angles  ( in  an azimuth-elevation 
s y s t e m ) ,  siant range and range r a t e  data for  up to  30 r a d a r  s td t ions .  
'I'hc vehicle coordinates a r e  t ransformed f rom a sys t em of geocen- 
t r i c  c,irtesian coordinates  ixyz), the x-ax is  in the direction of the 
\ ;ernal equinox and the x - y  plane in  the equator ia l  plane of the ea r th  
t o  the required topocentric azimuth elevation sys tem.  This i s  a c -  
c o i i i p l i s h c d  b y  n s e r i e s  of coordinate t ransformations as  follows: 

1 .  
a n  ;ingle RA, 
s t at i on. 

A rotation of the coordinate sys t em about the z -ax i s  through 
so that x ,y plane i s  in  the mer id ian  plane of the 

X' x c o s R A s  ysinRAs 

y r  = - - x s i n R A S  t Y C O S R A ~  

I -  z - 2  

The velocity t ransformat ion  must take the rotational velocity of the 
new coordinate sys t em into account. 

x - 1  - - y I we + X c o s ~ ~  + ; s i n u s  

il 1 - x l w e  - i s i n w s  t  cos^^^ 

' 1  - * z - z  

where  x' , y '  , Z '  a r e  the rotated coordinates  ant i s  the right 
ascens ion  of the station and we is the s iderea l  r a t e  of the e a r t h ' s  

RA 

1- 1 



rotation. 
longitude is computed by  the program. 

The G.H.A. necessary  to  obtain RAs f r o m  the station 

2 .  A t ranslat ion of the origin of the coordinate sys tem f rom the 
cen te r  of the e a r t h  to the station i n  question 

z ”  = z ‘  - ( s + h )  s i n 4  

where  

s = ( 1 - 2 ) c  

where  x ” ,  y “ ,  z ”  a r e  the t ranslated coordinates.  @is the geodetic 
latitude and h the height above sea  level  of the station in question. 

3. A rotation of (90  - $) about the y “  axis  t o  place the ( x ” ,  z ” )  

1 - 2  



plane into the horizon plane 

x"' = x" s i n 4  + z "  cos4  

Y "' = Y 

z"'  = - x" c o s + +  z "  s i n $  

,,: x = kf' s i n 4  + k" cos 4 

if'" = if If 

Now x"', y"', zf" are the coordinates of the vehicle in a topocentric 
azimuth elevation system, with z"' axis pointing to  zenith and the 
x"' pointing south along the meridian.  Range, range ra te ,  azimuth 
and elevation a r e  then given by 

x l l l  &,,I + y"' $ U  + z l l l  i f f ,  

;.: = Range ra te  
P 

= Elevation Z 

E = t an- '  ( x f l 1 2  + yl '12)  1/2  

I- 3 
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J. TRIAXIAL iMOON 

Tr i a s i a l  lunar potential constants (as  used in  the ITEM P r o g r a m )  

1. The values of the constants A ,  B and C for the perturbation 
acce lera t ions  due to  the t r iaxial  moon may be calculated using 
data  f rom the NASA ea r th  model meeting. 
cur ren t ly  being used in  the ITEM Program.  

These constants a r e  

2.  The perturbation accelerations due to  the t r iaxial  moon a r e  
given by the par t ia l  der ivat ives  of 

= '{* r 3  (1 - 5) + ( 1-3r2 x2)} 

where  

I, - 1, 
IC 

A =  

(J.1) 



The form of the equations used i n  the ITEM P r o g r a m  a r e :  

3xc 
F dx  - - 1-5 

- -  

3zc  6ACz F -- 
r 5  r 5  

d@ - - - -  
d z  

where  

F = {A(F - 1) t B ( 5  - 1) 

Based on the NASA ea r th  model meeting, the moments  of iner t ia  
about the principal axes of the moon a r e :  

I, = .88746 x 1 0 3 5 k g  me te r s ’  

I, = .88764 x 103’kg m e t e r s 2  

I, = .88801 x 103’kg me te r s ’  

(See Figure 3) 

Other constants a r e :  

(ERI3  
pLe 19.9094165 x - 

m’ 
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C=r 
Shortest rad ius 
(axis of rotation) 

I (to earth) 

Figure 3 - Triaxial  Moon 

- d 7 3 8 . 0 9 :  
- (6378.165; = .0742595 ( ear th  radi i j2  __ - 

(a 4 
me = 5.975 x io2’ grams 
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me - 5.975 1 0 2 4  
= 7.34616 ,x, 1.- 81.335 81.335 Kg 

- z z  
111 ~ 

= ( 1738 .09 )2  = 3.0209568 x lo6 km2 

The constants A , B  andC may be calculated 

i .88801- .88746 1 
= 619.36 x - - 

.88801 
IC - 1, 

IC 
A =  

- ( .88764-.  88746 1 
202.70 x .88801 

- 
1, - I, 

IC 
B =  

F o r  the ITEM P r o g r a m  the uni ts  of C a r e  

( e a r t h  r a d i i  ; 
m 2  

t he re fo re  

= { ( .2447829 1 ( .0742595 3(  .88801 1 x l o 2 ’  
3 }{ 2(7.34616x 1022) (3 .0209568x  l o 8 )  

C = 36.366998 x ear th  mass x ( ea r th  rad ius)2  
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In summary  the constants used  in the ITEM P r o g r a m  as  based 
upon the NASA e a r t h  model meeting a r e :  

A = 619.36 x 

B = 202.70  x 

C = 36.366998 x e a r t h  mass x ( ea r th  r ad ius ) ’  

J - 5  



K. DRAG COMPUTATION 

The drag  acce lera t ion  is computed, assuming a spherical ly  
s y m m e t r i c  a tmosphere  rotating with the ear th .  Thus: 

where  

V e f f  = R - w x  R 

w is the s ide rea l  rotation r a t e  vector of the ear th .  

K-1 



L. COMPUTATION O F  SUBSATELLITE POINT 

The geodetic coordinates of the subsatellite point a r e  computed 
by the following method: 

The geocentric latitude (declination) is obtained f rom 

This  latitude is then cor rec ted  to geodetic latitude by the formula 

where  

- -  1 
a2 - 1024r (512e2 + 128e4 t 60e6 t 35e8} 

1 3 
32r 256r 

t 7 (e6 t ea} -- (4e6 t 3e8) 

1 
1024r a4 - - - -  (64e4 + 48e6 + 35e8} 

1 15e8 ea 
t - (4e4 t 2e6 t e*} t - - - 

16r2 256r3 16r4 

35 
768r 

t- (4e6 + 3e') 
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5 64 252 3207 

e = the eccentricity of the ea r th  

r = the distance from ea r th ' s  center  

See Reference 5. 

The geodetic height is then given by 

The longitude is  obtained by subtracting the s iderea l  t ime of 
Greenwich f r o m  the right ascension given by 

Y tanRA = 7 

L-2 



ni  . POLAR COORDINATES REFERRED TO THE MOON 

Moon longitude and latitude are defined in  the coordinate system 

described in Appendix J, If the vehicle coordinates with respect to 

the center of the moon in this coordinate system are given by x . y , 

z , r ,  then 

8 = longitude = tan -1 - Y 
X 

-1 z cp = latitude = sin - r 

M-1 



N. SHADOW LOGIC 

A coordinate system is set up in the plane defined by the centers 

of the light-emitting source, the shadowing body, and the probe. Both 

bodies are assumed to be spherical, and hence all testing can be car- 

ried out in this plane. The diagram in Figure 4 shows this plane. 

The coordinates are  defined by unit vectors i and j : 

where 

d = R  s i  -vc - 

Vehicle coordinates in this system are given by: 

1/2 2 = R j = [-d + r 2 ]  
yV -vc - vc 

z = R . K = O  
V -vc - 

(N. 2) 
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1. Shadow Parameters 

a) The tips of the umbra and penumbra cones are: 

b) The slopes of the bounding lines are: 

r - 
C 

U 
s i n a  = cos 8 = - 

U u d  

I r 
C I cos ep= s i n a  = - 

dP 

sin a 
u cosa! 

U 

U 
tana! =- 

sin 8 
U 

U 

tane =- cos e 

sin a! 

p c o s a  
t a n a  = P 

sin 8 
t an6  = P 

p cos e 

P 

P 

c) Refraction Correction: (UMBRA) 

9 e' = e - €  
U U U U 

a!' = a  - €  

s ina '  = s i n a  cos E - cos a sin 
U U U 

tano! - t a n €  
U 

= 1 +tarlo! t a n €  

taneU- tan 

1 + t m e  tan€  

U 

tanel = 
U 
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r 

sin a' 
C d' = - 

U 

U 

d) Refraction Correction: (PENUMBRA) 

Both € < a  €'a ; a' = a  - €  
P P P P 

sin a' = 1 s i n a  cos - cos a sin F 1 
P P P 

t ana  - tan c 
t ana '  = P 

p l+tana tan€  
P 

t an8  - t a n €  
tme'  = 

p i + t a n e  tan€  
P 

r 
1 C 

d = - sign (tana' ) - 
p s ina '  

P P 

The equations of the bounding lines are given below. 

2. The Testing Procedure 

9 Line 
P 

I Yvl 
- x  2 0 tan8' v 

P 
Q1 = 

I Yvl 
- x  < 0 - 

t an@ v 
P 

Sunlight 

Go to next test 

N-4 
, 
I 

- 



1 yv I - ( xV - d' ) tan Q' > 
P P 

I y 1 - ( xv - d' )tan a' = 
v P P 

0 Sunlight 

0 Sunlight penumbra boundary 
Q, = 

< 0 Go to next test 

If R = 0 , exit here. .e 
\ 

I YvI 2 0 Penumbra 
- x  

V < 0 Go to next test 
Q3 = a 

U 

> 0 Penumbra 

Q4 = 1 y I - (xv- d' )tan a' = 0 Shadow penumbra boundary 
V U U 

< 0 Shadow 

Q2 and Q4 are stored and saved. The crossing times 

are found by linearly interpolating for 0-values of Q 2 and 

Q4 respectively, to guarantee that crossing from one region 

into another always occurs across these boundaries. 
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0. SOLAR RADIATION PRESSURE 

The radiation pressure subroutine computes the force of solar 

radiation on the spacecraft if an appropriate pressure coefficient 

is used. 

to multiply the pressure coefficient by 1 . 0 ,  0 . 5 ,  or 0 . 0  for full 

sunlight, penumbra, and umbra, respectively. Therefore, the shadow 

subroutine must be used in conjunction with the radiation pressure 

routine for most cases. If the spacecraft is known to be continually 

in sunlight, the number 1 . 0  may be loaded into SHDN and thus 

elaborate shadow testing may be avoided. 

The calculation relies on the shadow routine to set a trigger 

(See Section VIII-A for definition of symbols .) 

This radiation pressure subroutine has been found to be inexact 

for  satellites of large area-to-mass ratio since it only controls the 

pressure to the nearest integration step. 

balloons), several degrees error  in true anomaly may result after 

100 days unless the integration is carried exactly to the boundaries. 

A modification to achieve this increased precision is available and 

will be included in future versions of the program. 

For such spacecraft (e. g. , 
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P. ECLIPTIC COORDINATES 

The ecliptic coordinates a r e  an approximate set  obtained by a 
s imple rotation of the equatorial coordinates about the x-axis 
through a fixed angle i = 23"26'31" which i s  approximately the 
t r u e  obliquity f o r  J an  0.0, 1962. More exact coordinates may  be 
obtained by changing NE, (unit normal  to  the ecliptic) as desired.  

P- 1 



Q. . iMOON ~~ ROTATING AND FIXED COORDINATE SYSTEM 

Geocentric coordinates of the vehicle based on the ear th-moon 
plane a r e  generated f r o m  the geocentric equator ia l  radius  vector  
to  the vehicle, R,,, the geocentric unit vector  in  the direct ion of 
the moon R Y E ,  and the vector  in the direct ion of the moon ' s  velocity, 

,. 

RM,. 

Coordinates in  the rotating sys tem,  XROT etc . ,  a r e  found by using 
the cu r ren t  values  of these  vec tors  at  each  t ime  s tep  in the relations 

XROT = R,, * R,, 

ZROT = R,, * f iME 

where  

n 

F o r  the fixed axis  sys t em X I N J ,  etc. ,  the init ial  vec tors  R,, ( to)  
and R M E  (to) a t  the t i m e  of injection a r e  used with the cu r ren t  
value ofRVE . 
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R. TRAJECTORY SEARCH 

The program provides a search routine to obtain selected trajec- 

tories. The search is based on linear theory and varies the polar load 

input quantities (independent variables) to search for desired dependent 

variables. 

from, although a maximum of seven of the twelve may be used in  any 

given search. 

There are twelve possible dependent variables to select 

The quantities, at present, are  

i ,  0 ,  0 ,  t (pericenter t ime),  and 
P 

r (pericenter radius) 
P 

The above five variables at the moon and at the earth (in the case 

of earth return trajectories) constitute the first ten variables. (These 

quantities are normally referred to the equatorial plane. 

earth-moon plane is also available. 

However, the 

In addition, the components of the impact parameter vector ( B  T , 

They are referred to the ecliptic plane for B - R)  may be selected. 

M a r s  and Venus trajectories and the moon's orbital plane for lunar  

trajectories. 

number of dependent variables for this routine to operate. 

The number of independent variables must equal the 

This search routine is time consuming if  the initial conditions a re  

Before using this routine, two things should be poorly approximated. 

done. 
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1. A first guess of the initial conditions of the nominal trajec- 

tory should be obtained from a patched conic or a similar 

search program. 

2. The number of variables should be kept to a minimum. It 

is planned to automate the iteration scheme to go from two- 

body, to patched conic, to full trajectory, and to increase 

the number of variables to be adjusted, in optimal fashion. 

Even in its present form, however, it is extremely useful. 
1- 

The iterator uses a modified version of the MIN-MAX Principle 

(Reference 6). 

A. .  
1J 

Ax. 

is the matrix of partials 

is the vector of changes in the independent 
1 variables 

is a diagonal matrix of weights 
'ii 

is a vector of residuals Yi 

The system to be solved is 

(A . .  A..  + X..)Axi = A.. Y. 
11 1 J1 1J 11 

A . . A . . + A . . =  B..  
J1 1J 11 1J 

i A. .  y. = z 
11 1 
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Procedure 

The system 

B.. Ax. = zi 
13 1 

is solved. If the value of Ax. is greater than SIZER , some arbi- 

trary amount, set 
1 

B.. = B.. + k.. 
11 1J 11 

and solve the system again. Repeat these operations until Ax, is 

less than o r  equal to SIZER. Now, run 

with the new independent variable 

x. = x. + Ax. 
1 1 1 

a) If the new residuals y. are greater 
1 

€3.. = B.. + Xii 
11 1J 

Solve the system again and continue 

I 

a new nominal trajectory 

than the previous ones, set 

solving until the new 

residuals are  less than the old. Now the system is ready 

for a new iteration. 

b) If the new residuals y. are less than the old, set 
1 

B.. = B.. - Xii 
1J 1J 

Solve the system again and continue solving until the new 

residuals are greater o r  equal to the old. 

The iteration continues until either the maximum number of 

iterations (input) is exceeded o r  the residuals are less than o r  equal 

to an input tolerance. 
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S. EQUATIONS FOR FLIGHT PATH AZIMUTH AND FLIGHT 
PATH', ANGLE 

A subroutine computes the flight path azimuth and flight path 
angle with the following equations : 

1. Flight path angle 

fi is the ver t ical  unit vector.  In the geodetic sys tem fi is given by 

6 [cos +cos (6 - o , , ) ,  cos + s i n  (0 - o0), s i n  +] 

In the geocentric sys tem 4 is  replaced by 4' . Alternatively, in the 
la t te r  sys tem 

2. Flight path azimuth 

(S.2) 
1 

Both formulas  a r e  used to  determine the proper  quadrant of A .  
obtain the geocentric output, e 2  = 0 ,  4 i s  replaced by declination 

To 

> = $ ' .  
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T. OSCULATING E L E M E N T S  
~- 

The osculating elements  a re  obtained f rom the following equations: 

e cos E r 
e cosh E} .= ' -  

e s i n E  d 
e sinh E 

E - e s i n E  
M = {  e sinhE - E 

M - tp . -  t '-n 

The angles 0, w, i a r e  obtained from the vectors  H and F, where 

I n  t e r m s  of these vectors :  

H 
cos i = h in the f i r s t  o r  fourth quadrant ( T . 9 )  

T-1  



H 
h s i n  i s i n G  = 

( T . l O )  

COS w = P cos 0 t Py s i n  Q 

( T . l l )  
P 

s i n  i s i n w  = 

T -2  



U. IMPACT PARAME TE RS 

The "impact parameters" a re  coordinates in the ffimpactff plane. 

This plane passes through the body (planet o r  the moon) and is normal 

to the incoming asymptote. The direction cosines of the asymptote are  

given by equations (U. 1, U. 2) in terms of unit vectors 6 (Appendix T) 

and 

h H A  
h 

Q =  - x P  

A i r h  J 2 A 1  

S = - L P +  (e -1) Q j  e 

and IMP In the plane defined by as its normal, two unit vectors ? 
h A 

is parallel to the ecliptic plane for Mars T~~~ a re  defined. R~~~ 
and Venus impacts, and to the moonfs orbital plane for moon impacts. 

Explicitly 

where fi is the unit normal to the ecliptic plane, or  the moon's orbital 

plane. Rmp is normal to both and 

from the body to the vehicle as it crosses the impact plane. The data 

computed a re  the dot products 

A 

is the vector IMP' B~~~ 

n 

B ~ ~ ~ *  T~~~ 

and 
n 

B ~ ~ ~ *  R~~~ 



V .  MOON'S ORBITAL PLANE INPUT AND OUTPUT 

A polar coordinate system is available for  input and output 
which uses  as i t s  reference plane the m-oon's orbi ta l  plane and the 
vector  f r o m  moon to  ea r th  as unit vector.  
this  sys tem a r e  defined analogous to  geocentric polar coordinates. 
The Cartesian coordinates in this sys tem a r e  computed by equa- 
tions (H. 3 )  with 

Polar  coordinates in  

and 

8, = 0 

Here r B  is  the radius of the body of departure  ( ea r th  o r  moon). 

These coordinates a r e  then t ransformed to  equatorial  coordinates 
by a matrix C computed as follows: 
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The t ransformation ma t r ix  C is then given by 

and 

R = CR,,, 

R = CR,,, 

The matrix C is unitary, and C-' = C*, permitt ing easy  inversion 
of equations (V.2) .  

v-2 



W. EQUATIONS - FOR TRANSLUNAR PLANE INPUT 

The translunar plane input is designed to permit easy visualization 

of the geometric relationships between initial conditions for circum- 

lunar trajectories and the motion of the moon. 

The initial conditions are given in a coordinate system referred to 

the translunar plane. This system has its x axis along the ascending 

node of the vehicle with respect to the moon's orbital plane, its y axis 

in the translunar plane at right angles to the ascending node, in the di- 

rection of motion. In this coordinate system, initial position and velocity 

vectors a re  given by 

x TL = ( r g + h ) c o s 3  

yTL= ( r g + h ) s i n Q  

ZTL= 0 

Here % is the radius of the body of departure (earth o r  moon). 

X = v sin (y- ik) TL 

= v cos ( y - Q )  y~~ 

iTL= 0 

TL 
with respect to  the moon's orbital plane and the lunar lead angle c p ,  

the angle between the moon's position at injection and the descending 

The translunar plane is positioned by giving its inclination i 

node. 

equatorial system by the following series of rotations: 

The vectors RTL and RTL may then be transformed into the 
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1. A rotation - i,, about the xTL, axis will rotate the t rans lunar  
plane into the moon's  orbital  plane. 

2. A rotation of n -(Ay ++) about the new z-axis  will r e f e r  
the moon's  orbi ta l  plane coordinate sys t em to  the ascending node 
of the moon's  orbi ta l  plane (with respec t  to  the equator)  a s  x-axis .  

Here  A, s tands f o r  the argument of latitude of the moon. These 
rotations a r e  pe r fo rmed  by multiplying R,, and R,, by the mat r ix :  

A =  

-cos (b + 4 )  s in  (h, +4) - s i n ( h + $ ) s i n i , ,  

- s in (A,,, +$) cos (b + 4) s in  i,, - cos ( A,, ++) cos i,, 

0 sin i,, cos i,, 

3 .  The moon 's  orb i ta l  plane (MOP) is rotated about its node 
through a n  angle - i, (the inclination of the MOP). 

4. The ascending node is brought into coincidence with the 
verna l  equinox by a rotation- 0,. 
in  the m a t r i x  

These two rotations a r e  embodied 

cos RM - s i n  0, cos i, 

cos 0, cos i, 

s i n  0, s i n  i, 

- cos Q, s i n  i, 

0 s i n  i, cos i, 
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and thus:  
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Y. CHANGE OF INDEPENDENT VARIABLE - BETA MODE 

According to the standard Encke method, we introduce a differential 

e quation 

.. P 
P = - P -  

I PI3 

In the construction of the closed-form solution for (Y. 1), a parameter 

6 arises. It is related to t by Kepler's equation, 

where f is a transcendental function of 6 and is obtained by summing 

several power series. 

If t is taken as the independent variable, Equation (Y. 2) has to 

be solved for /3 by an iterative method, requiring numerous time- 

consuming evaluations of the function f for each integration step. 

Using j3 as the independent variable, however, only requires a single 

evaluation. 

It remains, of course, to see what becomes of Equation (Y. 1) and 

.. .. .. 6 = x - p  

= - p ( - -  X -) P + F 
I P I ~  
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if is the independent variable. We have, from Kepler's equation, 

that 

at any point along the solution of (Y. 1). Thus 

at any point along the solution of (Y. 1) and the initial conditions become 

when 

/3 = B ( t ) =  0 
0 0 

Now the solution for  (Y. l), p and p' ,  can be written in closed form 

for any 8. As auxiliary quantities in this solution, we have I p I and 

. They are  computed a s  functions of /3 before p and p' are  
P -  P' 

I P I  
D = -  

known; that is, with accuracy at least a s  good a s  that of p and p ' .  

Not only are  they needed and easy to compute, but they also have the 

interesting property that 

and 

d2 t D 

Thus Equation (Y. 1) is solved more economically in terms of 6 than 

in terms of t. 
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Now we turn to Equation (Y.3) .  To treat it, we warit to express .. 
6" in terms of 6 .  From (Y. 5) we have that 

' dt I P I  

Differentiating with respect to @ ,  

Thus (Y. 7) is the equation to  be integrated numerically, instead of - .  

(Y. 3). The coefficients - Id and - D can be calculated with much 
Lc I PI  

more accuracy than the factors involving 6 ,  since they depend only 

on the two-body solution. 

write (Y. 7) as 

For analysis of e r ro r  propagation, we 

IP13 - p ] + y F + [ ' -  I P ?  D (Ye 8) 

I PI  IP+61 IP I  
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The mechanics of the procedure, then, are easy to enumerate. The 

initial conditions are x and x Let 
0 0' 

D Using these initial conditions, evaluate t , -, -, p , p' for each 

value of 6 to be considered. 
IPI 

Let 6 = 6' = 0. Using these initial conditions, integrate Equation 
0 0  

(Y. 7)  to get ( ( 6 )  and [ ' ( p ) .  Note that the first two terms on the 

right-hand side of Equation (Y. 7)  are functions of x and possibly x'. 

These a re  obtained by 

If at any point is required, it can be found from 

Depending on the rectification control log,;, there will be places 

where the solution to Equation (Y. 1) must be started over. At this 

point, the values t ,  x ,  k become the new t x and x while 

p ,  6 , and 5' are reset to zero. 
0' 0' 0' 

(Y. 10) 

(Y. 11) 
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Comparison of Modes 

8 

a) It is immediately apparent that eliminating the necessity 

of iteratively solving Equation (Y. 2) will substantially 

increase the speed of computation. 

b) An important advantage arises further from eliminating 

the sometimes ponderous logic which supplies initial 

guesses for the iterative process and guarantees con- 

vergence of the solution. 

c) A third advantage of the p-method is not quite so apparent, 

but no less important. It is well known that the size of the 

integration time step can be increased as the distance from 

the center of attraction increases. This change of the inte- 

gration interval requires a cumbersome restart  procedure. 

An examination of Equation (Y. 5) shows that equal intervals 

of 

the distance increases. The time interval thus automatically 

expands and contracts correctly without outside intervention. 

correspond to time intervals of increasing lengths as 

d) Geometric stopping and printing conditions can usually be 

conveniently expressed in terms of p ,  whereas they often 

require iterative determinations of the time. This advan- 

tage, however, is slight. 
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e )  If state vectors are  required at fixed times, an iteration is 

necessary to find the corresponding value of j9. In this case 

the 6 -method is no better, and no worse, than the standard 

methods. If such vectors are required at frequent, closely 

spaced, time points (as in orbit determination, for instance), 

the advantage of the -method is marginal. 

I 
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